Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Symbiosis ; 86(1): 123-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368327

RESUMO

The vegetation in the Arabian Peninsula experiences drought, heat, soil salinity, and low fertility, mainly due to low phosphorus (P) availability. The beneficial mycorrhizal symbiosis between plants and arbuscular mycorrhizal fungi (AMF) is a key factor supporting plant growth under such environmental conditions. Therefore, AMF strains isolated from these soils might be useful as biotechnological tools for agriculture and revegetation practices in the region. Here we present a pioneering program to isolate, identify, and apply AMF isolated from rhizosphere soils of agricultural and natural habitats, namely date palm plantations and five native desert plants, respectively in the Southern Arabian Peninsula. We established taxonomically unique AMF species as single-spore cultures as part of an expanding collection of AMF strains adapted to arid ecosystems. Preliminary experiments were conducted to evaluate the abilities of these AMF strains to promote seedling growth of a main crop Phoenix dactylifera L. and a common plant Prosopis cineraria L. (Druce) in the Arabian Peninsula. The results showed that inoculation with certain AMF species enhanced the growth of both plants, highlighting the potential of these fungi as part of sustainable land use practices in this region.

2.
Fungal Genet Biol ; 147: 103517, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434644

RESUMO

For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Fosfatos/metabolismo , Proteoma , Solo/química , Proteínas Fúngicas/genética , Nitrogênio/metabolismo , Fosfatos/análise , Raízes de Plantas/microbiologia , Proteômica , Simbiose/genética , Simbiose/fisiologia
3.
PLoS One ; 15(2): e0228993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053664

RESUMO

Bioirrigation has been defined as the transfer of hydraulically lifted water by a deep-rooted plant to a neighbouring shallow-rooted plant which cannot access deep soil moisture. In this study, we tested if facilitative effects of bioirrigation or the competition for water dominate the interaction of two intercropped plants-deep-rooted pigeon pea (PP) and shallow-rooted finger millet (FM) before and during a drought. Additionally, we tested how the presence of a common mycorrhizal network (CMN) affects the balance between facilitative (i.e. bioirrigation) and competitive interactions between two intercropping species. Our results show that PP can indeed promote the water relations of FM during a drought event. Specifically, stomatal conductance in FM controls dropped to low values of 27.1 to 33.6 mmol m-2s-1, while FM in intercropping treatments were able to maintain its stomatal conductance at 60 mmol m-2s-1. In addition, the presence of PP reduced the drought-induced foliar damage and mortality of FM. The observed facilitative effects of PP on FM were partially enhanced by the presence of a CMN. In contrast to the facilitative effects under drought, PP exerted strong competitive effects on FM before the onset of drought. This hindered growth and biomass production of FM when intercropped with PP, an effect that was even enhanced in the presence of a CMN. The results from our study thus indicate that in intercropping, deep-rooted plants may act as "bioirrigators" for shallow-rooted crops and that a CMN can promote these facilitative effects. However, the interspecific competition between the intercropped plants under conditions of abundant moisture supply can be strong and are enhanced by the presence of a CMN. In more general terms, our study shows that the extent by which the antagonistic effects of facilitation and competition are expressed in an intercropping system strongly depends on the availability of resources, which in the case of the present study was water and the presence of biotic interactions (i.e. the presence of a CMN).


Assuntos
Secas , Milhetes/fisiologia , /fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Água/metabolismo , Biomassa , Milhetes/metabolismo
4.
Plant Signal Behav ; 14(5): e1590094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907222

RESUMO

In Arabidopsis thaliana AtPEPR1 and AtPEPR2 act as the receptors for the endogenous AtPROPEP-derived Pep peptides and subsequently initiate defense-signaling cascades. In the previous work,9 the expression pattern of the genes encoding the PEPR receptors and the AtPROPEP peptide precursor proteins was studied using promoter-GUS reporter constructs. Here, using the same constructs to study their expression pattern under biotic and abiotic stress, including AtPep1, flg22, methyl jasmonate (MeJA), and NaCl treatments, we observed that in response to AtPep1 and flg22, the activation of AtPEPR1 promoter was different from AtPEPR2. We also found that these promoters were differentially activated in response to NaCl. Remarkably, we showed that it is possible to classify the genes of the AtPROPEP family, based on the response of their promoters to the various stimuli employed: thus, we classify AtPROPEP1 in one group; AtPROPEP2 and AtPROPEP3 in a second group; AtPROPEP4, AtPROPEP7 and AtPROPEP8 in a third group and AtPROPEP5 in a fourth group. Our finding, confirm non-redundant roles among the members of the AtPROPEP family and their corresponding receptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
5.
Science ; 363(6433)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898901

RESUMO

Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Cálcio/metabolismo , Cisteína Endopeptidases/metabolismo , Imunomodulação , Imunidade Vegetal , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Citosol/enzimologia , Oligopeptídeos/metabolismo
6.
Front Plant Sci ; 10: 1617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921260

RESUMO

In arbuscular mycorrhizal (AM) symbiosis, key components of nutrient uptake and exchange are specialized transporters that facilitate nutrient transport across membranes. As phosphate is a nutrient and a regulator of nutrient exchanges, we investigated the effect of P availability to extraradical mycelium (ERM) on both plant and fungus transcriptomes and metabolomes in a symbiocosm system. By perturbing nutrient exchanges under the control of P, our objectives were to identify new fungal genes involved in nutrient transports, and to characterize in which extent the fungus differentially modulates its metabolism when interacting with two different plant species. We performed transportome analysis on the ERM and intraradical mycelium of the AM fungus Rhizophagus irregularis associated to Populus trichocarpa and Sorghum bicolor under high and low P availability in ERM, using quantitative RT-PCR and Illumina mRNA-sequencing. We observed that mycorrhizal symbiosis induces expression of specific phosphate and ammonium transporters in both plants. Furthermore, we identified new AM-inducible transporters and showed that a subset of phosphate transporters is regulated independently of symbiotic nutrient exchange. mRNA-Sequencing revealed that the fungal transportome was not similarly regulated in the two host plant species according to P availability. Mirroring this effect, many plant carbohydrate transporters were down-regulated in P. trichocarpa mycorrhizal root tissue. Metabolome analysis revealed further that AM root colonization led to a modification of root primary metabolism under low and high P availability and to a decrease of primary metabolite pools in general. Moreover, the down regulation of the sucrose transporters suggests that the plant limits carbohydrate long distance transport (i.e. from shoot to the mycorrhizal roots). By simultaneous uptake/reuptake of nutrients from the apoplast at the biotrophic interface, plant and fungus are both able to control reciprocal nutrient fluxes.

7.
Mycorrhiza ; 28(8): 779-785, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30006910

RESUMO

Drought is a limiting factor for crop production, especially in arid and semi-arid climates. In this study, Sorghum bicolor plants were inoculated, or not, with Rhizophagus irregularis, an arbuscular mycorrhizal (AM) strain typical for temperate climates, or Rhizophagus arabicus, a strain endemic to hyper-arid ecosystems. Plants were grown under well-watered or drought conditions in compartmented microcosms. Transpiration rates, plant growth, and nutrient uptake (using 15N as a tracer) were determined to assess the impact of drought stress on sorghum plants in AM symbiosis. Although AM colonization did not affect the bulk biomass of host plants, R. arabicus improved their transpiration efficiency and drought tolerance more than R. irregularis. Moreover, R. arabicus was able to extract more 15N from the soil under both water regimes, and AM-driven enhancement of the nitrogen and phosphorus content of sorghum, especially when water was limiting, was greater for R. arabicus-inoculated plants than for R. irregularis-inoculated plants. Our work demonstrates close links between AM hyphal phosphorus and nitrogen transport and uptake by AM plants for both AM fungal species. It also underscores that, under the drought stress conditions we applied, R. arabicus transfers significantly more nitrogen to sorghum than R. irregularis.


Assuntos
Secas , Micorrizas/metabolismo , Nutrientes/metabolismo , Sorghum/metabolismo , Sorghum/microbiologia , Transporte Biológico , Micorrizas/isolamento & purificação , Isótopos de Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Simbiose
8.
Front Plant Sci ; 9: 688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875790

RESUMO

The plant pathogen Pseudomonas syringae injects about 30 different virulence proteins, so-called effectors, via a type III secretion system into plant cells to promote disease. Although some of these effectors are known to suppress either pattern-triggered immunity (PTI) or effector-triggered immunity (ETI), the mode of action of most of them remains unknown. Here, we used transient expression in Nicotiana benthamiana, to test the abilities of type III effectors of Pseudomonas syringae pv. tomato (Pto) DC3000 and Pseudomonas syringae pv. tabaci (Pta) 11528 to interfere with plant immunity. We monitored the sequential and rapid bursts of cytoplasmic Ca2+ and reactive oxygen species (ROS), the subsequent induction of defense gene expression, and promotion of cell death. We found that several effector proteins caused cell death, but independently of the known plant immune regulator NbSGT1, a gene essential for ETI. Furthermore, many effectors delayed or blocked the cell death-promoting activity of other effectors, thereby potentially contributing to pathogenesis. Secondly, a large number of effectors were able to suppress PAMP-induced defense responses. In the majority of cases, this resulted in suppression of all studied PAMP responses, suggesting that these effectors target common elements of PTI. However, effectors also targeted different steps within defense pathways and could be divided into three major groups based on their suppressive activities. Finally, the abilities of effectors of both Pto DC3000 and Pta 11528 to suppress plant immunity was conserved in most but not all cases. Overall, our data present a comprehensive picture of the mode of action of these effectors and indicate that most of them suppress plant defenses in various ways.

9.
Mol Plant Microbe Interact ; 31(7): 707-723, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424662

RESUMO

In plants, RNA silencing-based antiviral defense generates viral small RNAs (sRNAs) faithfully representing the viral genomes. We employed sRNA sequencing and bioinformatics (sRNA-omics) to characterize antiviral defense and to reconstruct the full genomic sequences and their variants in the evolving viral quasispecies in cultivated solanaceous plants carrying mixed infections. In naturally infected Solanum tuberosum (potato), one case study revealed a virome comprising Potato virus Y (genus Potyvirus) and Potato virus X (genus Potexvirus), which was reconstructed by de novo-assembling separate genome-size sRNA contigs. Another case study revealed a virome comprising NTN and O strains of Potato virus Y, whose sRNAs assembled in chimeric contigs, which could be disentangled on the basis of reference genome sequences. Both viromes were stable in vegetative potato progeny. In a cross-protection trial of Solanum lycopersicum (tomato), the supposedly protective mild strain CH2 of Pepino mosaic virus (genus Potexvirus) was tested for protection against strain LP of the same virus. Reciprocal mechanical inoculations eventually resulted in co-infection of all individual plants with CH2 and LP strains, reconstructed as separate sRNA contigs. LP invasions into CH2-preinfected plants and vice versa were accompanied by alterations of consensus genome sequences in viral quasispecies, indicating a potential risk of cross-protection measures. Additionally, the study also revealed, by reconstruction from sRNAs, the presence of the mechanically nontransmissible Southern tomato virus (genus Amalgavirus) in some plants. Our in-depth analysis of sRNA sizes, 5'-nucleotide frequencies and hotspot maps revealed similarities in sRNA-generating mechanisms in potato and tomato, differential silencing responses to virome components and potential for sRNA-directed cross-targeting between viral strains which could not, however, prevent the formation of stable viromes.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Solanum , Coinfecção , Potexvirus/isolamento & purificação , Potyvirus/isolamento & purificação , Interferência de RNA , RNA Viral , Solanum/virologia
10.
Plant Cell ; 30(2): 397-414, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367305

RESUMO

Establishment of symbiosis between legumes and nitrogen-fixing rhizobia depends on bacterial Nod factors (NFs) that trigger symbiosis-related NF signaling in host plants. NFs are modified oligosaccharides of chitin with a fatty acid moiety. NFs can be cleaved and inactivated by host enzymes, such as MtNFH1 (MEDICAGO TRUNCATULA NOD FACTOR HYDROLASE1). In contrast to related chitinases, MtNFH1 hydrolyzes neither chitin nor chitin fragments, indicating a high cleavage preference for NFs. Here, we provide evidence for a role of MtNFH1 in the symbiosis with Sinorhizobium meliloti Upon rhizobial inoculation, MtNFH1 accumulated at the curled tip of root hairs, in the so-called infection chamber. Mutant analysis revealed that lack of MtNFH1 delayed rhizobial root hair infection, suggesting that excess amounts of NFs negatively affect the initiation of infection threads. MtNFH1 deficiency resulted in nodule hypertrophy and abnormal nodule branching of young nodules. Nodule branching was also stimulated in plants expressing MtNFH1 driven by a tandem CaMV 35S promoter and plants inoculated by a NF-overproducing S. meliloti strain. We suggest that fine-tuning of NF levels by MtNFH1 is necessary for optimal root hair infection as well as for NF-regulated growth of mature nodules.


Assuntos
Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Medicago truncatula/enzimologia , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Simbiose , Quitina/metabolismo , Hidrolases/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Oligossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia
11.
PLoS One ; 12(10): e0185808, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973025

RESUMO

Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.


Assuntos
Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Flagelina/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas de Arabidopsis/genética , Quitina/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flagelina/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transativadores/genética
12.
Front Plant Sci ; 8: 1263, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769964

RESUMO

Naranjilla (Solanum quitoense) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains (Rhizoglomus irregulare, Claroideoglomus claroideum, and Cetraspora helvetica) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with permaculture soil might have been caused by a higher abundance of AMF and the presence of Piriformospora indica as revealed by NGS. A higher frequency of AMF and enhanced root colonization rates in the trap cultures supplemented with permaculture soil highlight the importance of diverse agricultural systems for soil quality and crop production.

13.
Mycorrhiza ; 27(7): 695-708, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667402

RESUMO

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.


Assuntos
Proteínas de Transporte de Cátions/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Poaceae/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/microbiologia , Análise de Sequência de DNA
14.
Plant Cell Physiol ; 58(6): 1003-1017, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28387868

RESUMO

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.


Assuntos
Perfilação da Expressão Gênica , Micorrizas/fisiologia , Nitrogênio/metabolismo , Populus/genética , Populus/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/genética , Simbiose/fisiologia
15.
Front Plant Sci ; 8: 2204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375594

RESUMO

The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

16.
Plant Signal Behav ; 11(11): e1252014, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27791461

RESUMO

The membrane-based receptor-like kinase BAK1 has been reported to interact with a number of other membrane-based receptors to contribute to a variety of signaling responses to exogenous and endogenous cues. These include brassinosteroid hormones as well as conserved microbe-derived and endogenous patterns. More recently, several lines of evidence have been reported to expand this concept also to the detection and deterrence of insect herbivores. We hereby present results that further support this hypothesis as they show that in Arabidopsis thaliana, herbivore oral secretions trigger two hallmark responses of plant innate immunity and that these responses are significantly reduced in plants that lack functional BAK1 receptors.


Assuntos
Herbivoria/imunologia , Imunidade Inata/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Regulação da Expressão Gênica de Plantas/fisiologia , Imunidade Inata/imunologia , Oxilipinas/metabolismo , Imunidade Vegetal/imunologia , Imunidade Vegetal/fisiologia
17.
Proc Natl Acad Sci U S A ; 113(39): 11034-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27651493

RESUMO

Sensing of potential pathogenic bacteria is of critical importance for immunity. In plants, this involves plasma membrane-resident pattern recognition receptors, one of which is the FLAGELLIN SENSING 2 (FLS2) receptor kinase. Ligand-activated FLS2 receptors are internalized into endosomes. However, the extent to which these spatiotemporal dynamics are generally present among pattern recognition receptors (PRRs) and their regulation remain elusive. Using live-cell imaging, we show that at least three other receptor kinases associated with plant immunity, PEP RECEPTOR 1/2 (PEPR1/2) and EF-TU RECEPTOR (EFR), internalize in a ligand-specific manner. In all cases, endocytosis requires the coreceptor BRI1-ASSOCIATED KINASE 1 (BAK1), and thus depends on receptor activation status. We also show the internalization of liganded FLS2, suggesting the transport of signaling competent receptors. Trafficking of activated PRRs requires clathrin and converges onto the same endosomal vesicles that are also shared with the hormone receptor BRASSINOSTERIOD INSENSITIVE 1 (BRI1). Importantly, clathrin-dependent endocytosis participates in plant defense against bacterial infection involving FLS2-mediated stomatal closure and callose deposition, but is uncoupled from activation of the flagellin-induced oxidative burst and MAP kinase signaling. In conclusion, immunity mediated by pattern recognition receptors depends on clathrin, a critical component for the endocytosis of signaling competent receptors into a common endosomal pathway.


Assuntos
Arabidopsis/imunologia , Clatrina/metabolismo , Endocitose , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Autofagia , Endossomos/metabolismo , Flagelina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Transdução de Sinais , /metabolismo
18.
Front Plant Sci ; 7: 679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252708

RESUMO

Nutrient acquisition and transfer are essential steps in the arbuscular mycorrhizal (AM) symbiosis, which is formed by the majority of land plants. Mineral nutrients are taken up by AM fungi from the soil and transferred to the plant partner. Within the cortical plant root cells the fungal hyphae form tree-like structures (arbuscules) where the nutrients are released to the plant-fungal interface, i.e., to the periarbuscular space, before being taken up by the plant. In exchange, the AM fungi receive carbohydrates from the plant host. Besides the well-studied uptake of phosphorus (P), the uptake and transfer of nitrogen (N) plays a crucial role in this mutualistic interaction. In the AM fungus Rhizophagus irregularis (formerly called Glomus intraradices), two ammonium transporters (AMT) were previously described, namely GintAMT1 and GintAMT2. Here, we report the identification and characterization of a newly identified R. irregularis AMT, GintAMT3. Phylogenetic analyses revealed high sequence similarity to previously identified AM fungal AMTs and a clear separation from other fungal AMTs. Topological analysis indicated GintAMT3 to be a membrane bound pore forming protein, and GFP tagging showed it to be highly expressed in the intraradical mycelium of a fully established AM symbiosis. Expression of GintAMT3 in yeast successfully complemented the yeast AMT triple deletion mutant (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2). GintAMT3 is characterized as a low affinity transport system with an apparent Km of 1.8 mM and a V max of 240 nmol(-1) min(-1) 10(8) cells(-1), which is regulated by substrate concentration and carbon supply.

19.
New Phytol ; 211(3): 1008-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27030513

RESUMO

Pattern-triggered immunity (PTI) is a plant defense response that relies on the perception of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively). Recently, it has been recognized that PTI restricts virus infection in plants; however, the nature of the viral or infection-induced PTI elicitors and the underlying signaling pathways are still unknown. As double-stranded RNAs (dsRNAs) are conserved molecular patterns associated with virus replication, we applied dsRNAs or synthetic dsRNA analogs to Arabidopsis thaliana and investigated PTI responses. We show that in vitro-generated dsRNAs, dsRNAs purified from virus-infected plants and the dsRNA analog polyinosinic-polycytidylic acid (poly(I:C)) induce typical PTI responses dependent on the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1), but independent of dicer-like (DCL) proteins in Arabidopsis. Moreover, dsRNA treatment of Arabidopsis induces SERK1-dependent antiviral resistance. Screening of Arabidopsis wild accessions demonstrates natural variability in dsRNA sensitivity. Our findings suggest that dsRNAs represent genuine PAMPs in plants, which induce a signaling cascade involving SERK1 and a specific dsRNA receptor. The dependence of dsRNA-mediated PTI on SERK1, but not on DCLs, implies that dsRNA-mediated PTI involves membrane-associated processes and operates independently of RNA silencing. dsRNA sensitivity may represent a useful trait to increase antiviral resistance in cultivated plants.


Assuntos
Arabidopsis/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Ecótipo , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Vírus de Plantas/efeitos dos fármacos , Vírus de Plantas/fisiologia , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
New Phytol ; 211(3): 1020-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27120694

RESUMO

Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.


Assuntos
Arabidopsis/imunologia , Arabidopsis/virologia , Autofagia/efeitos dos fármacos , Caulimovirus/fisiologia , Pseudomonas syringae/crescimento & desenvolvimento , Explosão Respiratória , Ácido Salicílico/farmacologia , Proteínas Virais/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Caulimovirus/efeitos dos fármacos , Caulimovirus/patogenicidade , Inativação Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Domínios Proteicos , Pseudomonas syringae/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Deleção de Sequência , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA